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Abstract. The article discusses a mnvenion identity through which the series expansion 
of the Green’s function periaining to the scalar Helmholk equation can be readily mnvened 
into a series expanded Green’s dyadic. This expansion finds a simple application in the 
electromagnetic radiation theory leading to eleciric multipole and magnetic multipole terms 
of the vector potential and the resulting E and B fields. The dyadic is also used to obtain 
a series expansion of the magnetostatic vector potential. Finally, the role played by localized 
longitudinal and localized transverse currents in the generation of the electromagnetic field 
is brieEy examined, leading to the conclusion that a localized longitudinal current is 
self-screening. That k, it does not produce any electromagnetic fieid outside the domain 
of its distribution. 

1. Introduction 

The most familiar treatment of the classical multipole radiation field [ 1,2] usually 
follows a method suggested by Bouwkamp and Casimir [3]. In this method, the E and 
B fields are expanded into multipole terms by 6rst solving the inhomogeneous 
Helmholtz equation for the radial components of these fields. The source densities in 
these equations appear somewhat cumbersome, making it difficult to get a transparent 
picture of the sources involved. Secondly, for many applications, particularly in 
Lagrangian formulations and quantum theories, the relevant fields are the scalar and 
vector potentials (@,A). It is, therefore, profitable to stress alternative methods which 
follow the standard technique of solving Maxwell’s equations through an integral 
solution of the inhomogeneous Helmholtz equations satisfied by @ and A. Expansion 
of these potentials in terms of spherical harmonics leads to electric and magnetic 
multipole terms of the radiation field. In this article, we outline one such approach 
which centres around Green’s dyadic and its series expansion. 

The direct integral approach and subsequent multipole expansion with the help of 
Debye potentials can be found in several earlier papers [4,5]. Shore and Menzel [6] 
have used vector spherical harmonics to a limited extent in a formalism worked in the 
Coulomb gauge. Morse and Feshbacb [7] have outlined the Green’s dyadic approach 
for solving vector Poisson’s equations and the potentials used by them are essentially 
Debye potentials. Green’s dyadic of a different sort, generating the E and H fields 
directly, are sometimes used by communication engineers 181. 

The approach we propose in this article arrives at an expansion for A in the Lorentz 
gauge, employing the full set of vector spherical harmonics. This expansion, we hope, 
will be found to be more succintly expressed and easier to handle. The basic tool in 
our approach is a conversion identity that transforms the all-too-familiar Green’s 
function into a Green’s dyadic. 
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In section 2, we have outlined this conversion mechanism and have demonstrated 
how the resulting series expansion of the Green’s dyadic leads to a series solution of 
the vector Helmholtz equation. Section 3 treats the electromagnetic vector potential 
as a special case. The series expansion of the vector potential can be decomposed into 
two subseries, generating magnetic multipole components (shown in section 4) and 
electric multipole components (shown in section 5 ) .  In section 6, we have applied the 
Green’s dyadic approach to obtain the multipole expansion for the magnetostatic field. 
In section 7, we have tried to gain some insight into the nature of localized longitudinal 
and transverse currents and the fields they generate. We have concluded that a localized 
longitudinal current is necessarily self-screening, implying thereby that it cannot pro- 
duce any electromagnetic field outside the domain of its distribution. Section 8 gives 
a brief summary. 

2. Converting the Green’s function to a Green’s dyadic 

The scalar Helmholtz equation 
(V’+k2)$(r)=-f(r) 

admits the well known Green’s function 11, pp 223-4,7421 
exp(ik1r - r‘l) 

4 ~ l r -  r’] G(r, r‘) = 

which can be expanded into the series: 
CO I 

G(r, r‘)  =ik C hdkr)jl(W C L ( 8 ,  4 )  E(@‘, 4’). (3) 
1=0 m=-1 

In the above equation (r, e,+) and (r’ ,  e,+’) are the spherical polar coordinates of 
the radius vectors r and r’, with the stipulation that r>r‘ .  hl and j l  represent, 
respectively, the spherical Hankel function of the first type (representing outgoing 
wave) and the spherical Bessel function. We shall, henceforth, write Cl to mean (e, +). 

Assuming that all the sources responsible for the field are contained within a volume 
V, the complete solution of equation (1) is expressed in the integral form: 

Q(r )  = J G(r, r‘)f(r‘)  d’r‘ 
V 

(4) 

where r is larger than the maximum value of r‘ in the integral. 

equation 

Equation (5 )  represents three scalar equations, one each for the three Cartesian 
components of +, namely 

A corollary of equation (4) follows to be the solution of the vector Helmholtz 

(V’ + k’) +( r )  = -f( r ) .  ( 5 )  

(V’+k’)Mr) = - J W  i = x, y, z. 

Here Qj and f; are, respectively, the Cartesian components of the vector field + and 
the source density vectorJ Solutions for the individual component fields combine to 
yield the required vector field in the integral form 

+(.)=Iv G(r,r‘)f(r‘)d’r’= iv G(r,r’)  .f(r’) d’r‘ (6) 



Multipole radiation through Green's dyadic 1387 

where 

G(r, r') = G(r, r')l (7) 
is the Green's dyadic and 1 is the unity dyadic or the idemfactor. 

The expressions (6) and (7) are coordinate independent even though equation ( 5 )  
has a meaning when expressed in terms of components in a Cartesian system. We can 
now use equation (3) to expand G in the spherical coordinate system. 

The above series can be converted into a more useful form with the help of vector 
spherical harmonics, as we shall show. 

The uector spherical harmonics are obtained through tensor multiplication of the 
scalar spherical harmonics { Yl,,,(n)} with the spherical base vectors {e:)} defined 
[6, p 268; 9, pp 1031 as 

Here e,, e,, e: are the Cartesian base vectors i, j ,  k. The spherical base vectors form 
the components of a spherical tensor e'" of rank 1. We shall, henceforth, write the 
spherical harmonics as Y:), where the superscript in parentheses acts as a reminder 
that we are considering a spherical tensor of rank 1. 

The vector spherical harmonics {T:)(I; a)} are the 2 j +  1 components of the 
spherical tensor T"'( I; a) obtained [6, p 295; 9, p 1061 as a tensor product of Ycf)(0)  
with e('). 

T ~ ) ( z ;  a)= i: C(Z, 1,j; m -p, p, m) ygL&(a)e;). 
*=-1 

In the above, the symbol C stands for Clebsch-Gordan coefficient. Explicit expressions 
for these vector spherical harmonics [6, pp 412-81 for I >  1 are: 

and, for I = 0: 

whereas, T$'(O; 0) and TL')(O; a) are undefined. We shall formally set 

T$)(O; a) = 0 for j = 0, -1. WJ) 
Formulae ( l l b )  and ( l l c )  are a simple corollary of the gradient formula [9]. Formula 
( l l a )  can be verified by noting that the C-G coefficients suggested in equation (10) 
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are, up to multiplicative constant, the same coefficients that appear in the recursion 
relations for YE! (see [ 11 p 743, equation (16.28)). The rest of our discussion is based 
on the following identity. 

This identity is valid for all values of I including I = 0, provided we adopt the definition 
(12). Equation (13) has been proved in the Appendix. 

The identity (13) transforms the series expansion of G from the elementary form 
shown in equation (8) to one which can be useful in a variety of contexts. 

As a consequence, the series solution of the vector Helmholtz equation (5) outside the 
source distribution can be written compactly as: 

where 

(156) S"" ~ J v j f ( k r ) T i ) * ( i ; ~ )  * f ( r ) d 3 r  

and R is the radius of a sphere centred at the origin and enclosing the entire source 
domain V. 

3. Multipole expansion of the vector potential in the electromagnetic radiation theory 

It is sufficient to determine only the vector potential A(r) e-;"' in the Lorentz gauge 
by solving the Helmholtz equation [I, pp 219-201: 

47rJ(r) 
(Va+ k2)A(r) = 

C 

Here J ( r )  e-'"' is the harmonically varying localized current density and k =o/c.  The 
scalar potential @(r) e-'"' obtains from A(r) through the formula 

and hence, does not need any separate treatment. 

potential in the following series form: 
The general result (15 )  and equation (16) suggest that we can write the vector 

where 
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4. Magnetic multipole radiation 

The sub-series of equation (18), corresponding to j = Z  gives the so-called ‘magnetic 
multipole’ components. Denoting magnetic multipole with M, the corresponding vector 
potential is 

4mik I 
A ( M ;  r ) = -  C Sg)hl(kr)Xg)(CL) (19a) c m=-l 

with 

It is seen from (l la) that, for any arbitrary radial functionf(r), 

v . { f ( r ) x g ’ ( n ) }  = 0. (20) 

Therefore, equation (17) suggests that Q, = 0. The E and B fields in the source  free 
regions are now obtained. 

1 J A ( M ;  r )  
c J f  

E ( M ;  r ) =  -- 

M I  
= C a,,,([, m)hr(kr)X;)(CL) r > R  

I = 1  m=-1 

i 
k 

B ( M ; r ) = - - V x E ( M ; r )  r > R  

where 

47rk2 
a M ( I , m ) =  ---$I 

C 

These coefficients are similar to the coefficients defined by Panofsky and Phillips 
[2] and coincide with the magnetic multipole coefficients defined by Jackson [I]. This 
can be verified by looking at the definition of X:) in equation ( 1 1 ~ )  and performing 
the integration by parts. 

5. Electric multipole radiation 

The ‘electric multipole’ contributions come from the j = I +  1 and j = I - 1 terms of (18). 
The corresponding vector potential outside the source is 
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Computation of the magnetic field, by taking the curl of the above potential, is facilitated 
by the following identities. 

These identities can be derived by using the explicit forms of 7'!?(1; a)  given in 
equations (11) and the following recursion relationst applicable to any function z d x )  
representing any one of spherical Bessel, spherical Neumann and spherical Hankel 
functions. 

The curl of the vector potential of equation (23) yields 

B(E; r )=VxA(E;r )  

The expression within { } can be reduced, using the definition of Sg)' given in equations 
(18) and the identity (24c). 

- ( 21+1 L)"~l+l (kr )T~)*( l  + 1; CL)] 

=i 1 d'rJ(r) .Vx[j~(kr)Xt)*(n)]. (27) 
k v  

t Our recursion relations (25) follow from p 741 equations (16.14) of [l]. Our equation ( 2 4 ~ )  is found in a 
slightly different form in [6] p 413. 
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Therefore, 

1 
E ( E ;  r) =- V x B(E;  r) r > R  

k 

where 

1391 

These coefficients look similar to the coefficients defined by Panofsky and Phillips [2]. 
Exploiting the relation 

(30) 
where p ( r )  e-ior is the electric charge density, and the fact that j I ( h ) Y g ) ( a )  satisfies 
the Helmholtz equation, the integral in (29) can be performed by parts. It then reduces 
to the same coefficients used by Jackson [l], which we quote here for subsequent use. 

V . J(r)  = iop(r) 

(31) 
4wkz d .  ik 

Y!,!)*(n) p- {g,(kr)}+- (r  . J )  jl(kr) a E ( k m ) = .  ~ [ l ( l + l ) ] ' / ~  1" [ dr C 

6. The magnetostatic case 

The Green's dyadic (14) corresponding to the vector Helmholtz equation will fit into 
the vector Poisson's equation [I ,  p 1761. (corresponding to k=O) by noting that 

I 

i(21-1)!! 
h@r)*_o-- (kr)l+' f 

With this modification, the Green's dyadic of equation (14) transforms to the form: 

Consequently, the vector potential is 

where 

1 r'T$)*(l; a) . J ( r )  d3r. (336) 
V 

The term j=  1+1 drops out from the sum in (33a). To see this we refer to equation 
( l l c ) ,  use the fact that V J =0, and perform the integration in (33) by parts. 
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The term j = l - 1 in the sum (33) is unnecessary because 

as can be seen from equation (1 1 b ) .  Consequently, 

B ( r )  = V x A ( r )  

where the above A is the effective vector potential having the expanded version 
(34) 

A(r)=-i x r > R  (35) 
1 - 1  m=-1 

where 

is the magnetic multipole moment of the stationary current distribution. The above 
expansion can be obtained in an alternative manner, by converting the magnetic scalar 
potential to a vector potential by a conversion rule [lo]. 

7. Self screening charges and curreoh 

Any given distribution of current J ( r )  e-i"' can always be decomposed [ l ,  p 2221 into 
a longitudinal or irrotational current J l ( r )  e-'"' and a transverse or solenoidal current 
&(r)  e-'". 

J ( r )  = J d r ) +  Jh) (36) 

where, by definition, 

V x J l = O  v.J,=o 
so that 

V X J, = V x J V . Jf = V . J. 
It follows that Jl and J, are obtainable from a scalar potential ,y and a vector potential 
P satisfying 

J , ( r ) f - V x  V X  = -V . J 
J,( r )  = V x P V . P = O  V 2 P =  -VX J. 

(38) 

It is then obvious that even when J is localized, its components JI and J, are not 
necessarily so. 

However, one can imagine localized JI and J, separately and examine the kind of 
electromagnetic fields they can generate. We wish to point out the following features 
of these fields. 

(i) A locazized Zongihrdinal current Jf ( r )  e-iw' is necessarily self-screening. That is, 
it produces neither an electric multipole nor a magnetic multipole field. 
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(ii) A localized transuerse current J, ( r )  e-’“’ which is also transverse to the radius 

The second conclusion is obvious due to equation (30). In this case, V . JI = 0, so 

The first conclusion will be shown to follow from the expressions for the coefficients 

vector, that is J , ( r ) .  r =O,can produce only a magnetic multipole field. 

that p =O.  Therefore aE( l ,  m )  = O  according to equation (31). 

a,(Z, m )  and aE(l, m )  appearing in equations (22) and (29). 

&’roo$ Let us consider the integral in the expression for a, (1, m )  in equation (22) and 
recall the expression for X:) (a )  in equation (11). 

I , -  j,(kr)X$’*(a) . J l ( r )  d3r J Y 

= - 1 /  i[ I( 1 + 1)]”2 r x V{ jl(kr) Y:’*(a)} . JI( r) d’r. I” 
The integrand= r.V{jl(kr) Y$’ * (n ) }xJ I ( r )  

= r . o x { j l ( k r ) r ~ ’ * ( a ) J l ( r ) }  

= -v . (rxj,(kr) F;)*(i2)Jl(r)} 

(.; V x JI = 0 )  

(.: V x r = 0). 

Since J,(r)  is localized inside V, it follows by the divergence theorem that I ,  = 0. Hence 
a, ( l ,m)=O.  

Next, we consider the integrand in the integral expression for a€(!, m )  in (29). 

v x Gl(kr)X:)*(a)}  . Jl(r) = v . {jl(kr)xi’*(a) xJ l ( r ) }  ( ~ : v X J I = o ) .  

Again, by the divergence theorem, the integral is zero. Hence, 

a E ( t  m )  = 0. 

It would be o f  interest to visualize what kind of localized current density can be 
self-screening. From equations (38) and (30), 

Jdr)  = -VxW V 2 X ( r )  = -iwp(r). (39) 

E(r) = - V @ ( r )  v ’@(r )  = -47rp(r). (40) 

These equations are reminders of the electrostatic field derivable from a potential @: 

A localized electric field can be realized by placing a distribution of charges inside a 
volume V whose boundary surface is kept at zero potential. An example is shown in 
figure l(a) where a spherical zero potential surface S of radius R encloses a space V 
inside of which lies a point charge +Q. The localized electrostatic field E, which does 
not extent beyond r = R, is also shown. 

Equations (39) and (40) suggest that we can get a localized alternating longitudinal 
current Jl(r) e-i“ associated with an alternating charge density p(r)  e-’”‘by converting 
a localized electrostatic field with the prescription: 

(41) 

It should be noted, however, that in the first case E(r)  and p ( r )  are time-independent 
real static fields, whereas in the second case Jl(r)  and p(r) are, in general, complex 

47r 
E ( r )  +ZJM p(r)+p(r).  
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Figure 1. ( a )  Localized electrostatic field with r = R surface at zero potential. v represents 
surface charge density. ( b )  Localized longitudinal oscillating current obtained by converting 
figure l(a).  o(R. E. 4) e-'" represents oscillating surface charge density. 

amplitude functions of harmonically varying source densities. Jt(r, f )  and p(r ,  t) differ 
by a phase of ~ / 2 ,  due to the presence of i in equation (41). 

Figure (lb) shows the corresponding localized longitudinal current density obtained 
by the conversion mechanism (41). As already mentioned, such a localized current 
cannot produce any electromagnetic field beyond r = R. 

8. Summary 

The principal aim of this article has been to use Green's dyadic in obtaining a multipole 
expansion of the electromagnetic vector potential A ( r )  e-'@' resulting from a localized 
distribution of harmonically oscillating charges and currents. The steps used and the 
main conclusions reached are summarized as follows: 

(i) The series expanded solution of the inhomogeneous scalar Helmholtz's equation 
involving scalar spherical harmonics is converted into the desired vector form (equation 
(15)) with the help of a derived identity (equation (13)) which converts the relevant 
Green's function into a Green's dyadic expanded in terms of vector spherical harmonics 
(equation (14)). 

(ii) This vector series solution is utilized to obtain an expansion of the A field in 
the radiation theory (equation (lS)), leading to a separation of the Eeld into magnetic 
multipole terms corresponding to j = 1 and the electric multipole terms corresponding 
to j = li 1 (equations (21), (22), (28), (29)). 

(iii) The roles played by a purely longitudinal and a purely transverse localized 
current distribution are briefly examined in section 7, leading to the conclusion that 
the former does not produce any electromagnetic Eeld and is, therefore, self-screening. 

(iv) The expansion of the A field in equation (18) is made to suit vector Poisson's 
equation by letting k + 0, resulting in an expansion for the magnetostatic case (equation 
(35)). 
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Appendix 

To prove the identity shown in equation (13). 
We first write two minor identities which follow in a straightforward way from the 

definition of spherical base vectors, the definition of tensor product and the following 
Clebsch-Gordan coefficient [6 ,  pp 275-951. 

c(j,j,~; m, -m,0)=(-1)’+”/(2j+l)”~. (A.1) 
These identities are: 

[e‘l)@e‘”]‘O’= -{-eyey+ e( l ’e‘ l ) -  e!lwe\l’}/31/2 
0 0  

= -(e,e,+e,e,+~,e,)/3“~ 

= -1/31/21 (A.2) 

It is then obvious that 
1 Y:)(n) Y p ( n ’ ) l  
m 

= (-1)’+’[3(21+ l)]”’[[ Y‘”(O)@ Y‘l’(~’)]‘o’O[e‘”Oe(”](0)]‘O’ 

=(-1)’+1[3(21+1)]’’2 1 (2 j+ l )  1 1 0 
1+1 

j = f - ,  [; ; :} 
[[ y(O(n)@e(I)](j)@[ y(J)(n,)@e(l)](jl](0). 

The value of the above 9-j symbol can be obtained from Messiah [ll]. Recalling the 
definition of Tk) ( l ;  n) from equation (10) and taking the Clebsch-Gordan coefficient 
from equation (A.I), the above identity now reduces to the following form. 

;I: yc~)(n)yc~)*(n’)l=(-I)’+’ 1 f: (-1)’+”T~’([;R)T~!,,(i;nf). (A.5) 
I I+  I 

m=-f j=J- l  m = - j  

It is seen from equation (1  1) that 
Ty([; Q)= ( - l ) m j d f * l ’ *  m (kn) 
T!!L(l; a)  = (-l)m+lT:’*(l; a). 

Substitution in (AS) now leads to the identity (13) for la 1. 
Now we consider the special case corresponding to 1 = 0. Using the expressions 

for T!.!,’(O, n) given in equations (12) we notice that the right-hand side of equation 
(13) takes the form 

(A.6) 

-_ - l 1  (cf equation (A.2)) 
4 n  

= Yp’(n) Ybo’*(n‘)l. (A.7) 
Hence the identity (13) is valid for 1 = 0,1,2,3,. . . . 
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